

Probabilistic Forecasting of Wind Power Generation

Jethro Dowell

jethro.dowell@strath.ac.uk 10th EAWE PhD Seminar on Wind Energy in Europe Introductory Lecture - 28/10/14

Contents

- Into
 - Why? Who? What?
- Forecasting Methodologies
 - Statistical vs. Physical
 - Deterministic vs. Probabilistic
 - Examples
- Current Research and Challenges

Why forecast wind power?

- Wind is variable, but electricity grids and markets were designed for controllable power generation:
 - "Conventional" power plants have high availability and behave predictably.
 - Load forecasts are very accurate.
 - Therefore **penalties** exist for deviating from declared power production.
- Some specifics:
 - Define reserve requirements, unit commitment, economic dispatch, operating combined wind-storage, designing trading strategies...
- More significant for high penetration!

Why forecast wind power?

The Danish Experience

[†]Proportion of electricity generated, source EC.

Penetration	Danish Experience	
>5%	Basic forecasts are important	
>10%	Reliable probabilistic forecasts are needed	
>15%	Energy system integration	
>20%	Demand side management	
>25%	New methods for operating reserves are needed	

Source: EERA Workshop Presentation 8/5/14, Henrik Madsen.

Who uses wind power forecasts?

- Transmission Companies
 - RTE, NationalGrid, Tannet, 50Hertz, Red Electrica de España, Energynet.dk, CaISO, AEMO...
- Utilities
 - DONG Energy, Vattenfall, Acciona, Iberdrola, E.On, NUON, RWE, EnBW...
- Everyone else trading on markets with large wind penetration!

Time Scales

- Seconds (extremely-short-term)
 - Turbine/Farm Control
- Minutes (very-short-term)
 - Balancing and Transmission
- Hours (short-term)
 - Scheduling conventional plant
- Days
 - Day-ahead scheduling, large CHP operation
- Weeks
 - Maintenance
- Years
 - Investment/financing, cash flow etc.

Not Covered Today

Covered Today

Not Covered Today

Time Scales & Methodologies

Types of Model

Popular Error Metric – Root Mean Squared Error: (This is also a common cost function!)

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} e_t^2}$$

Forecasting Methodologies

Types of Model

Statistical	Physical
Auto-regression	Weather
- (AR, ARMA, ARIMA,)	Meso-scale Models
Neural Networks	Numerical Weather Prediction
Nonlinear Regression	
Learning Algorithms	Power Curve Model
	Statistical model of wind-to-
and many more	power conversion process

Inputs:

Recent Measurements

SCADA

Farm/Regional Aggregated Power Met. Measurements*Req. Power Curve

Inputs:

Meteorological Forecast

NWP Outputs

Met. Measurements + Meso-scale model

Forecasting Methodologies

Types of Model

Physical

Weather

Meso-scale lodels
Numerical \ eather Prediction

Power Curve Model

Statistical model of wind-topower conversion process

Inputs:

Meteorological Forecast

NWP Outputs

Met. Measurements + Meso-scale model

Forecasting Methodologies

Types of Model

Statistical		Physical	
Auto-regression - (AR, ARMA, ARIMA,) Neural Networks Nonlinear Regression Learning Algorithms		Weather: Meso-scale Models Numerical Weather Prediction Power Curve Model:	
and many more		Statistical model of wind-to- power conversion process	
Commercial products employ many techniques and draw on as much input information as possible!			
Examples:	WPPT, MORE-CARE, Sipreolico, WPMS, LocalPred, Prediktor, Previento, TrueWind,		
Service Providers:	3Tier, TrueWind, Windlogics, Precisionwind, Eurowind, DNV-GL (GarradHassan), UK MetOffice, Kjeller Vindtekknik, met.no, metro group,		

Point/Deterministic Forecast

 'Best guess' of generation at some point in the future:

Why Probabilistic Forecasting?

- The value of a forecast is in its application to decision a making problem.
 - Complex cost/loss functions (nonsymmetrical!)
 - The optimal point forecast for one application my not be optimal for another.
 - There is value in quantifying uncertainty and risk.
- Examples of probabilistic forecasts:
 - Quantiles, intervals, predictive distributions, trajectories/scenarios, risk indices.

Why Probabilistic Forecasting?

Example: APX/TanneT

 Bids are made at noon for each hour of the next day:

 P_U is typically much greater than $P_D \Rightarrow$ Revenue will be maximised if we reduce exposure to up-regulation at the risk of more down-regulation \Rightarrow Bid on some quantile.

Quantiles and Intervals

Predictive Distribution

- There are two error categories from NWP:
 - Level Error (incorrect intensity)
 - Phase Error (incorrect timing)
- Phase errors are more common and have larger impact on power systems.

Chance of Ramp Event

Summary so far:

- Lots of players require forecasts:
 - TSOs, Utilities, energy traders,...
- Quantifying <u>uncertainty</u> is extremely important!
- Many different types of forecast:
 - For specific applications
 - To suit the expertise of decision-makers
- Where is research now?

Spatio-temporal Approaches

VIDEO: Hydra Wind Dataset http://youtu.be/WvY85U_0Ins

[Hydra dataset of potential wind across NL, source: www.knmi.nl/samenw/hydra]

Spatio-temporal Approaches

- NWP are already very sophisticated spatial models...
 - leave that to the meteorologists!
 - NWP output calibration and power curve modelling are still very active areas.

- Spatio-temporal statistics can improve shortterm wind power forecasts significantly:
 - Vector regression, multivariate learning,...

Scenarios

Naïve Approach

Spatial and temporal dependencies ignored.

Scenarios

Considered Approach Spatial and temporal dependence captured.

Source: J. Tastu, P. Pinson, H. Madsen (2014). Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach. Lecture Notes in Statistics: Modeling and Stochastic Learning for Forecasting in High Dimension, in press.

Radar@Sea

VIDEO: Radar@Sea www.youtube.com/watch?v=YShQDCdVykM

Offshore Maintenance

References

Review Papers

- G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard & C. Draxl, "The State-Of-The-Art in Short-Term Prediction of Wind Power," ANEMOS.plus, 2011.
- X. Zhu & M. G. Genton, "Short-Term Wind Speed Forecasting for Power System Operations," Int. Stat. Rev., 80, pp.2-23, 2012.
- P. Pinson, "Wind Energy: Forecasting Challenges for its Operational Management," Statistical Science, 28, pp.564-585, 2013.

Forecasting Examples

- A. S. Hering & M. G. Genton, "Powering Up with Space-Time Wind Forecasting," Journal of American Statistical Association, 105, pp.92-104, 2010.
- J. Dowell, S. Weiss, D. Hill & D. Infield, "Short-Term Spatio-Temporal Prediction of Wind Speed and Direction," Wind Energy, 17, pp. 1945-1955, 2014.
- P. Pinson, "Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions," J. Royal Stat. Soc. Series C (Applied Statistics), pp.555-576, 2012.
- J. M. Sloughter, T. Gneiting & A. E. Raftery, "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging,"
 Journal of the American Statistical Association, 105, pp. 25-35, 2010.
- A. Bossavy, R. Girard, & G. Kariniotakis, "Forecasting ramps of wind power production with numerical weather prediction ensembles," Wind Energy, 16, pp. 51-63, 2013.
- T. Gneiting & M. Katzfuss, "Probabilistic Forecasting," Annual Review of Statistics and Its Application, 1, pp. 125-151, 2014.
- T. Gneiting, "Quantiles as optimal point forecasts," International Journal of Forecasting, 27, pp. 197-207, 2011.
- P. Pinson, L. E. A. Christensen, H. Madsen, P. E. Sørensen, M. H. Donovan & L. E. Jensen, "Regime-switching modelling of the fluctuations of offshore wind generation," J. Wind Eng. & Ind. Aero., 96, pp. 2327-2347, 2008.

