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Aerodynamic obstacles to 
the design of a VAWT
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How does it work?

• Cyclic variation of the angle of attack (α)
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Sectional view Airfoil’s reference frame

TSR λ = 2

Outer side

Inner side

Relative velocity

Freestream velocity
Rotational velocity
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• Cyclic variation of the tangential force (Ft)



Effect of tip-speed ratio (TSR)
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Deepwind
www.deepwind.eu
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DTU/MARIN/

DUWIND/NREL/

MARINTEK/etc...)

Gwind
www.gwind.no

(Gwind)

INFLOW
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(Nenuphar/Technip/
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Spinfloat
www.spinfloat.com

(EOLFI, subsidiary of 

ASAH LM)

VertaxWind
vertaxwind.com

(VertaxWind Ltd, 

subsidiary of Eurowind

Developments)
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• Anyway, do we know a kind of "optimal geometry 
in terms of aerodynamics"?
• Not sure… To date, no optimal VAWT geometry (or even 

nearly optimal) seems to exist as attests the large 
disparities between the geometries

• Reasons?
• Trade-off resulting from the ranking of the priorities and from 

the technical choices and requirements
(structural strength, safety devices, noise emission, price…)

• Difficulties to apprehend and model the VAWTs aerodynamics
(questionable performance computations and hard and 
doubtful operation of optimization)
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e.g. effect of solidity (σ)
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From Shiono et al. (2000)

on a water turbine

σ =
Nch

S
=
Nc

2R

Increasing solidity
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• Most usual: NACA0015, NACA0018
• Dedicated airfoil sections:

• Migliore and Fritschen (1982):
Transformed NACA632-015

• Klimas (1984), Berg (1990):
Sandia NLF family of airfoils

• Claessens (2006):
DU 06-W-200

• Ragni et al. (2014):
DU 12-W-262

• Preset toe-in and toe-out blade pitch?

• Position of the mounting point (pitching axis)?
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• C.J.S. Ferreira (2009): “Varying the pitching axis 
location and blade camber does not significantly 
affect the energy conversion in 2D potential flow.”
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e.g. choice of the airfoil section

• C.J.S. Ferreira (2009): “Varying the pitching axis 
location and blade camber does not significantly 
affect the energy conversion in 2D potential flow.”

“However, it significantly
affects the loading on the
blades, transferring torque
between the upwind and
downwind blade passages
and changing the average
normal force.”
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e.g. choice of the airfoil section

• C.J.S. Ferreira (2009): “Varying the pitching axis 
location and blade camber does affect the 
performance in 3D potential flow.”
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From F. Scheurich (2011)

Iso-Vorticity 

surfaces



e.g. choice of the airfoil section

• C.J.S. Ferreira (2009): “Varying the pitching axis 
location and blade camber does affect the 
performance in 3D potential flow.”

“We identified a large design space with significant 
improvements to be achieved. Research on cambered 
aerofoils and pitching axis location can lead to 
substantial gains in the efficiency of VAWT”
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• Complex aerodynamics at
blade, rotor and wind-farm
scales

• Rotor and blade scales:
• Unsteadiness, variations of the Reynolds number, 

possible very low flow velocities relative to the airfoil…
• Very vortical flows

• Blade-wake interactions

• Possible dynamic stall

• Flow curvature effects
• 3D effects

• Tip vortices

• Helical blades

From C. He (2013)



Flow curvature effects
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induced by its own motion
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= +

Translation Rotation

• Change in the aerodynamic behavior of an airfoil 
induced by its own motion

• Decomposition of the motion
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• Velocity deflection induced by the airfoil’s rotation



Effect of rotation
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• Relative velocity varies along the airfoil’s chord



Effect of rotation
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• So the angle of attack varies too…



Effect of rotation

Laurent Beaudet

15/39

• It behaves like a virtual cambered airfoil in a 
uniform flow field



Effect of rotation

Laurent Beaudet

15/39

• It generates lift due to its virtual characteristics

See Y.C. Fung (1955)



Effect of rotation

Laurent Beaudet

15/39

• So the rotating airfoil generates lift by its own 
motion

CL= 2παeq where αeq = αx =  3 4c

See Y.C. Fung (1955)



Effect of translation

• Translation perpendicular to U∞
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CL= 2παeq where αeq = αx =  3 4c



Effect of translation

• Translation perpendicular to U∞

• Translation parallel to U∞

• Make the magnitude of the relative velocity change 
over time
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CL= 2παeq where αeq = αx =  3 4c



Flow curvature in a VAWT

• Combined effects of rotation and translation
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Flow curvature in a VAWT

• Combined effects of rotation and translation
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F Z = −Zn ln
Zn − Z

Zn
where W(Zn) = 0

Physical Virtual

• Conformal mapping
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representing the upstream relative velocity 
(without considering deflections by its own wake)
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• Angle between the chord line and the vector 
representing the upstream relative velocity 
(without considering deflections by its own wake)
• Where is this upstream

relative vector?
• Can one find an

unperturbed velocity at
blade scale?

• Many points of view
depending on the author

• Why to calculate it?
• For its use in all actuator point/line models

and in all dynamic stall models

From C. He (2013)
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Some hints and remarks

• It is emphasized by the chord-to-radius ratio

• Use the angle of attack at ¾ of the chord line
• Takes into account some flow curvature effects

• Remove the velocity induced by the near wake

• Add compensation terms in the computation of 
loads, e.g.

• ∆CN ≈ −CLα

3
4

c − xm
ω
W

≈ −
πcλU∞
2RW
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See D.J. Sharpe (1984)



To go further…

• Analogy with flapping wing
• D. N. Gorelov (2009), Worasinchai et al. (2012, 2014):

“This analogy suggests that unsteadiness could be exploited 
to generate additional thrust and that this unsteady thrust 
generation is governed by rotor geometry”
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To go further…

• Analogy with flapping wing
• D. N. Gorelov (2009), Worasinchai et al. (2012, 2014):

“This analogy suggests that unsteadiness could be exploited 
to generate additional thrust and that this unsteady thrust 
generation is governed by rotor geometry”

• Viscous effects of flow curvature:
• Additional drag (Hirsch and Mandal (1984))

• Centrifugal effects boundary layer (Migliore et al. (1980))

• Impact on boundary layer separation (dynamic stall)
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Virtual



Dynamic stall in a VAWT
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What is dynamic stall and in which 
conditions does it happen?
• Dynamic stall is the stall phenomenon associated 

with the unsteady motion of lifting surfaces at 
high angles of attack
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• Delay in boundary layer separation

• Creation of a leading edge vortex (LEV)

• Shedding of the LEV

• Delay in boundary layer reattachment
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unsteady motion
high angles of attack

k =
ωc

2Uref

=
c

2R
λ−1 atan λ

2
−1

−1/2
−1

See Laneville and Vittecoq (1986)



What is dynamic stall and in which 
conditions does it happen?
• Dynamic stall is the stall phenomenon associated 

with the unsteady motion of lifting surfaces at 
high angles of attack

• When are these conditions met in a VAWT?
• High angles of attack at low TSR

• Flow over a VAWT is unsteady by
nature
• Level of unsteadiness is usually

measured with the reduced frequency (k)

• Low TSR and high chord-to-radius ratio for high unsteadiness
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unsteady motion
high angles of attack



What is dynamic stall and in which 
conditions does it happen?
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• High chord-to-radius ratio

• So high solidity σ =
Nc
2R

• Chosen design for low
optimal TSR



What is dynamic stall and in which 
conditions does it happen?
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• High chord-to-radius ratio

• So high solidity σ =
Nc
2R

• Chosen design for low
optimal TSR

• Low TSR λ =
Rω
U∞

• During usual operation for a high solidity VAWT

• During start-up (ω ≈ 0)

• For stall regulation (prescribed ω)



Why does dynamic stall in a VAWT 
differs from a usual one?
• Reference:

• Sinusoidal pitch in a steady uniform flow
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Why does dynamic stall in a VAWT 
differs from a usual one?
• Reference:

• Sinusoidal pitch in a steady uniform flow

• Differences:
• Variation of the angle of attack is not sinusoidal

• Not symmetrical

• Positive and negative
high angles of attack

• Fast and changing
pitch rate (high k)

• Modifies the
behavior of the
boundary layer
separation and
reattachment

Laurent Beaudet
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Sinusoidal pitch steady uniform

From R.K. Angell (1990)



From Laneville et al. (1985)

From Favier et al. (1988)

Why does dynamic stall in a VAWT 
differs from a usual one?
• Reference:

• Sinusoidal pitch in a steady uniform flow

• Differences:
• Not only pitch, but also plunge, fore and aft motions
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Why does dynamic stall in a VAWT 
differs from a usual one?
• Reference:

• Sinusoidal pitch in a steady uniform flow

• Differences:
• Not only pitch, but also plunge, fore and aft motions

• Complex combination of synchronized motions

• Does not seem to change the process, but changes the 
triggering and timing of the elementary steps, and also the 
vortex dynamics
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Why does dynamic stall in a VAWT 
differs from a usual one?
• Reference:

• Sinusoidal pitch in a steady uniform flow

• Differences:
• Unsteady and curved flow relative to the airfoil

• Variation of the velocity magnitude (up to very low values)

• Effects of Reynolds number

• Slow vortex convection
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Why does dynamic stall in a VAWT 
differs from a usual one?
• Reference:

• Sinusoidal pitch in a steady uniform flow

• Differences:
• Unsteady and curved flow relative to the airfoil

• Variation of the velocity magnitude (up to very low values)

• Effects of Reynolds number

• Slow vortex convection

• Curved flow

• Unsteadily curved

• Leads to strong blade-wake interactions

Laurent Beaudet
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Sinusoidal pitch steady uniform



What happens in the rotor?

• Flow visualization in the rotor
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Adapted from Brochier et al. (1986)

on a water turbine

2 blades, c/R ≈ 0.33, λ = 2.14, Rec ≈ 6400 
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What happens in the rotor?

• Flow visualization in the rotor
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Brochier et al. (1986) Fujisawa et al. (1995)

2 blades, Rec ≈ 6400 1 blade, Rec ≈ 1000

c/R ≈ 0.33, λ ≈ 2 



What happens in the rotor?

• Particle Image Velocimetry (PIV) near the blade
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Adapted from J. Bossard (2012) on a water turbine

3 blades, c/R ≈ 0.37, Rec ≈ 1.8×105

λ = 2

• Fujisawa et al.
σ = 0.167 and Rec ≈ 1500 

• Brochier et al.
σ = 0.333 and Rec ≈ 6400 

• J. Bossard
σ = 0.550 and Rec ≈ 1.8×105

Vorticity field
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Adapted from J. Bossard (2012) on a water turbine

3 blades, c/R ≈ 0.37, Rec ≈ 1.8×105

λ = 1

Vorticity field



Direct effects
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Adapted from L. Beaudet (2014)

3 blades, c/R ≈ 0.42, λ = 1, Rec ≈ 1.7×105

• Consequences:
• Suction effect of the LEV

• Boundary layer separation

Suction effect

Boundary

layer separation

Outer side

Inner side
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3 blades, c/R ≈ 0.42, λ = 1, Rec ≈ 1.7×105

• Consequences:
• Suction effect of the LEV

• Boundary layer separation

• Blade-vortex interaction Adapted from L. Beaudet (2014)
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• Dynamic stall affects the whole VAWT:
• High blade loading and impact on fatigue life
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Consequences

• Dynamic stall affects the whole VAWT:
• High blade loading and impact on fatigue life

• Impacts on torque and power extracted from the wind

• Interference with the rotor control (passive stall 
control)

• Impacts on the dynamics of the wake (wind farm)

• Noise emission (vortices and blade–vortex interaction)
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• Most used solution: semi-empirical dynamic stall 
models (Gormont, ONERA, Leishman-Beddoes…)
• Consist in only calculating unsteady loads from the 

angle of attack and static loads
• Again, how to choose the angle of attack…

• Affect loads, but neither pressure distribution nor wake…

• Are based on usual cases of dynamic stall encountered 
in aeronautics
• Not necessarily adapted to the specificities of VAWT (Mach and 

Reynolds numbers, type of motion, flow curvature, etc…)

• Adaptations exist for wind turbines (e.g. Sheng et al. (2008))
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Modeling dynamic stall

• Other options:
• CFD…
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1 blade, c/R ≈ 0.25, λ = 2, Rec ≈ 5×104

From C.J.S. Ferreira (2009)

PIV (experimental) LES (numerical)
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Modeling dynamic stall

• Other options:
• CFD…

• Double-wake model (Zanon et al. (2014))
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Classical 1-wake panel method Double-wake model
From Zanon et al. (2014)

Time-averaged 

vorticity

1 blade, c/R ≈ 0.25, λ = 2, Rec ≈ 5×104



Control of dynamic stall on a VAWT

• Methods already tested or studied on a VAWT:
• Vortex generators (VGs)

• Sutherland et al. (2012) about tests conducted in the 80ies:
“We equipped the Test Bed with vortex generators (…). The 
results were quite disappointing, as we were not able to 
detect any significant difference in turbine performance due 
to the presence of the VGs.”
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Control of dynamic stall on a VAWT

• Methods already tested or studied on a VAWT:
• Vortex generators (VGs)

• Active or passive pitch control
• B.K. Kirke (1998), Staelens et al. (2003), etc…

• Flap deflection
• D. Rathi (2012) (numerical simulations only)
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Control of dynamic stall on a VAWT

• Methods already tested or studied on a VAWT:
• Vortex generators (VGs)

• Active or passive pitch control

• Flap deflection

• Synthetic jets (steady/unsteady in/out air jets)
• Sasson and Greenblatt (2011) (numerical),

Yen and Ahmed (2013) (experimental)

• Plasma actuators
• Greenblatt et al. (2012, 2014)
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Conclusion
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Aerodynamic challenges to be 
tackled
•  Better understanding of the physical processes 

of the aerodynamic phenomena and assessment of 
their effects at different scales
• Flow curvature, dynamic stall, 3D effects, wake 

development, aeroelasticity, etc…
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Aerodynamic challenges to be 
tackled
•  Better understanding of the physical processes 

of the aerodynamic phenomena and assessment of 
their effects at different scales
• Flow curvature, dynamic stall, 3D effects, wake 

development, aeroelasticity, etc…

•  Modeling of these phenomena
• CFD, vortex models, semi-empirical dynamic stall 

models, etc…

•  Adaptation of numerical tools to optimize 
VAWT’s geometry or to control the effects of the 
aerodynamic phenomena with actuation
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Any question?

Laurent Beaudet
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