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Introduction 

2D wind tunnel polars for airfoils 
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Wind tunnel wall 

Wind tunnel wall 

Incompressible, “external”, wall bounded flow,  Re O(106) 
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Introduction 

Blade Element 
Momentum (BEM) 
Code 

• Annual Energy 
Production 

• Loads on blades 

Main assumption: 

The flow around the airfoil is 2D. 

Question: 

Does a symmetric 2D set-up result in symmetric 2D flow? 

2D wind tunnel polars for airfoils 
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Introduction 

Main assumption: 

The flow around the airfoil is 2D. 

Question: 

Does a symmetric 2D set-up result in symmetric 2D flow? 

2D wind tunnel polars for airfoils 
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[Nakayama, 1988] 
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Experimental Set Up 

Wing with free tips 

Tunnel Wall 

Tunnel Wall 

WING 

Pressure 
taps 

U∞ 
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Experimental Set Up 

Wing with endplates 

Tunnel Wall 

Tunnel Wall 
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Experimental Set Up 

Wall to wall wing model 
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Experimental Set Up 

Wall to wall wing model + endplates 

Tunnel Wall 
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Experimental Set Up 

The flow is always 3D at the tips 
Free tips 

[Head, 1981] [Apsley, 2001] 

Wall to wall/endplate models 
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Experimental Set Up 

What happens away from the tips? 
2D flow under attached flow conditions 

α 

Lift 
Drag U∞ 
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Experimental Set Up 

What happens away from the tips?  
3D flow around maximum Lift 
Stall Cells are formed 

α 

Lift 
Drag U∞ 
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Stall Cells 

Stall Cells are coherent structures of separated flow 

U∞ 

• large scale  

• consist of a pair of counter 
rotating vortices 

• are unstable 

• have been observed for a 
very wide range of Reynolds 
(Re) numbers 

• are not a tip effect  

chord 

Stall Cell 
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Structure 

Stall Cells 

Symmetry Plane 

Inviscid Wall 

SC vortex SLV 

TELV 

• The SC vortex  

‒ starts normal to the wing 
surface 

• The Separation Line Vortex (SLV) 

‒ parallel to the wing TE 

• The TE line vortex (TELV)  

‒ parallel to the SLV but with 
vorticity of opposite sign 

U∞ 

AR=2.0, Re=1.0×106, α = 16° 
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Inviscid Wall 

AR=2.0, Re=1.0×106, α = 16° 
Iso-surfaces of Q=1 

Symmetry Plane U∞ 

Structure 

Stall Cells 
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AR 2.0, α = 11°, Re = 1.0x106 

U∞ 

U∞ 

Stall Cells 

Instability 

• Their number or position can 
change arbitrarily 
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• Their number or position can 
change arbitrarily 

 

 

 

 

• Their movement/formation 
shows no apparent 
periodicity 
– No correlation with Re number, 

aspect ratio or angle of attack has 
been found. 

 

 

 

Stall Cells 

AR 2.0, α = 11°, Re = 1.0x106 

U∞ 

U∞ 

Instability 
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Implications 

Know what you measure 

U∞ 

U∞ 

U∞ 

U∞ 

CASE A 

CASE C 

CASE B 

CASE D 
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Implications 

Know what you measure 

Pressure time series from tap at x/c =0.11 

State 1 

State 2 
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Implications 

Know what you measure 

Cp distribution, conditional averaging 19/32 



Implications 

Know what you measure 

20/32 



Implications 

Know what you compare to 
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Multiple solutions exist for the 
discretized RANS equations 

• Grid 

• Turbulence model 

• Convergence 

• Initial conditions 

• Implementation of boundary 
conditions 

• Perturbations 

Which solutions correspond to 
real flow? 

 

Implications 

Know what you compute 

[Kamenetskiy, 2014] 
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Stall Cell Control 

Passive Vortex Generators (VGs) 
• VGs are vanes located normal to the wing surface 

• Their height is at the order of the Boundary Layer height 

• They create streamwise vortices that energize the boundary layer and thus 
delay separation 

• Easy to construct, position and repair, light weight 

U∞ 
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Stall Cell Control 

without VGs with VGs 

Re = 1.5x106, α = 14°  

Passive Vortex Generators can delay SC formation 

U∞ U∞ 
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• Clmax increased substantially (~50%) 

• Drag penalty at lower angles of attack (~0.002) 

Stall Cell Control 

Passive Vortex Generators can delay SC formation 
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• Depending on the chordwise location of the VGs, flow hysteresis may 

appear 

Stall Cell Control 

Passive Vortex Generators can delay SC formation 
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Stall Cells, where else? 

On wind turbine blades at standstill 

[Boorsma, 2014] 

Upper side, 10.4° 
 
 
 
 
Upper side, 16.4° 
 
 
 
Lower side, 3.6° 
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Stall Cells, where else? 

On wind turbine blades at standstill 

SC trace 

[Sorensen & Schreck, 2012] 
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Initial 2D formation 3D instability develops 

Separation shear layer folds up Final time averaged flow 

Stall Cell Formation 

Formation Hypothesis 
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Conclusion 

Yes, under attached flow conditions 
 
 
 
Not in the case of 3D trailing edge separation 

Does a symmetric 2D set-up result in symmetric 2D flow? 
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Outlook 

What causes the Stall Cell unsteadiness? 

 

How do adjacent Stall Cells interact with each other? 

 

What is the link between Stall Cells and blade 
vibrations? 

 

What happens on a rotating blade? 

 

How do we determine whether a numerical solution 
is “real” or not? 
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Thank you for your attention. 32/32 Questions? 
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